English

【致远科技】小中见大,四个压铸模具设计改善实例赏析

更新时间:2021-04-07 12:04:12 作者: 来源:(内容与图片来源于网络,如有侵权请与我们联系,我们会在第一时间删除。) 点击:

本篇文章通过对模具做出的一些小小的改进,达到节约成本,提高生产合格率的效果,在今后的批量生产中就会带来可观的经济效益。改变思路、从小事做起,往往能取得令人惊喜的效果。 由于铸件的质量和生产效率主要受压铸模具的设计和制作的影响,因此不断提高和改善压铸模具的设计和制作水平,对后续的铸件生产大有裨益。

 

通常如果在模具设计初期,设计人员能够与压铸模使用厂家进行深入的沟通,针对原有模具使用中的一些问题进行有目的的探讨,力争在新的模具设计制作中加以改进,对于后续的模具的使用维护、铸件的批量生产,以及后续加工都大有裨益。

下面针对生产实践中的对压铸模具进行的一些改善和提高的实例,作简要分析。

 

一、增加排气通道,稳定镶件尺寸

图1为减速器壳体铸件,该产品共有5件嵌件,且大部分一次成形,不再进行二次加工,对嵌件的尺寸要求较严。

图1 减速器壳体铸件

在生产过程中发现,产品的嵌件长短不一,且不合格品分布完全没有规律性,每个操作工、每个班次都存在有大批的不合格品。经过分析可能原因如下:①模具上嵌件安装底孔深度不合格;②操作者未将嵌件安装到位;③压铸机合模时因震动使嵌件脱出;④嵌件本身尺寸不合格导致安不到位。

经过现场排查,模具上的安装底孔深度和孔径都符合图样要求的尺寸;嵌件尺寸也完全符合图样规定的公差;据操作者反映每次嵌件都安装到位,就是干出的产品尺寸长短不一,压机震动的原因似乎也站不住脚。通过深入的了解,我们发现了一个不起眼的问题,操作工反应:嵌件安装时似乎有弹性,不易一下安装到位。

经过大量嵌件安装试验发现,由于模具底孔与嵌件的配合公差较小,操作者快速将嵌件安装进去后,底孔内的空气无法排除,形成一个空气压缩后的气垫,将嵌件从安装孔中弹出。

 为解决此问题,我们将模具安装孔的底部增加了一个排气通道,安嵌件时使孔内的空气能从此通道顺利排出,杜绝了类似问题的发生,保证了产品质量。

 

二、改进模具结构,防止轮毂模具局部开裂

 图2为轮毂产品,是摩托车上一个常用的零部件,过去一段时期,轮毂压铸模具常在短期内发生局部龟裂(如图2所示的模具龟裂部位),严重的影响了铸件的外观质量。

图2 100前轮毂示意图

为改善铸件的质量,我们对轮毂模具做了认真的分析,模具短期龟裂的主要原因有:①模具材料及热处理;②模具结构设计不当;③模具使用不当,缺乏必要的维护;④脱模剂使用不当。

 从模具结构上我们可以看到:圆周上的18个辐条孔及辐条沉头孔是由整体的18个小型芯成形的,这样,模具的动模、定模方芯便可以采用车床加工的方式完成,降低了模具加工难度。但是,这种结构从动模芯上来看,就造成了模具上18个辐条孔芯周围局部厚度仅有2mm左右。参见图3局部放大所示,图示点状区域是原有模具辐条小芯,如果将此区域与动模方芯一次成形,仅用活动型芯成形辐条孔,那么此处的模具壁厚将增加到4mm左右,虽然增加了模具的加工难度,但模具强度将会大大提高。在随后的模具制作中,我们改进了模具结构设计,用图8b所示的芯子取代了原有的图4a所示的辐条孔芯子,后期的轮毂模具基本上避免了在此处发生的早期龟裂现象。

图3 轮毂模具

 

图4 型芯的改进示意图

 

四、增加工艺芯子,降低右箱体粘模时的维修难度

 摩托车100型右曲轴箱体(如图5所示),在孔1附近有较多的凹槽,生产中极易发生产品件粘定模现象,且粘模后不易从定模中取出。每次粘模都浪费了大量的人力和物力来进行处理;由于受到图样尺寸所限,此处不能依据常规方法即加大脱模斜度的方式来解决。除对模具进行了适当的处理以减少粘模外,如何在粘模发生时尽快地取出粘模的铸件,成了要解决的一个主要问题。


图5 右曲轴箱体

通过对模具分析发现:孔1是由动模上的型芯来成形的,而粘模发生时,此型芯已从铸件中脱出,如果在孔1对应的定模侧增加一个工艺型芯(如图9所示),粘模时可通过孔1将此型芯敲出,之后利用此孔便能轻松的将粘模区域的铸件从定模中敲出。

 

四、铸件二次脱出,提高缓冲体铸件精度和生产效率

 图6为摩托车缓冲体铸件,该铸件平均壁厚2.5mm左右,机械加工后再配一个适当的链轮即为缓冲体组件。为保证摩托车后轮的平稳行驶,该组件装配时,缓冲体的4个链轮安装孔与中心的轴承孔之间有较高的位置度要求。

图6  摩托车缓冲体铸件

1.原有铸件的缺陷及改进

 由图6可以看出,因铸件结构所限,铸件在脱模时的抱紧力较大,为顺利地脱模,早期的压铸模具的顶杆设计见图7。为放置顶杆,铸件上的4个链轮安装孔的底孔便无法在模具上做出,需通过后续的机械加工的方式完成。但铸件在后续的机械加工过程中,因安装孔处壁厚较厚,铸件的内部缩孔严重,严重影响产品质量。同时,由于螺纹安装孔没有底孔,对机加定位要求较高,稍有疏忽,机加后的铸件则位置度超差,无法满足使用要求,且生产效率极低,满足不了批量供货的需求。

图7 早期的压铸模具的顶杆设计

 为从根本上解决这个问题,就必须对压铸模具在结构上做出改进和提高,螺纹安装孔有必要在毛坯件上做出底孔,要在毛坯上做出底孔,就必须改变顶出杆的位置。

经过分析讨论,决定将顶出位置更改为如图3所示的部位,同时由原来的4根顶杆增加到8根。

图8 改进后的铸件示意图

 

生产过程中发现,由于顶杆所在位置铸件壁厚较薄,加之铸件抱紧力较大,铸件不能顺利地被顶出,时常会发生铸件顶出时底面被顶穿的现象,造成铸件报废。

 

 2.新设计模具的提高

 要想解决这个新问题,势必要增加顶杆数量或减小铸件的抱紧力,由于位置所限,再想增加顶杆数量已不可能,只能从减小铸件的抱紧力上下功夫。

 根据模具结构,我们决定通过让铸件二次脱模的方式脱出,来分减第一次所需的顶出力。具体方案为:

 将动模中芯的尾部台阶做到6 mm厚,动模型芯上的安装孔的深度做到10 mm(如图9 所示),开模时,动模中芯随压铸件一起向前运动4 mm,完成第一次脱模。此后,顶出板继续顶出,压铸件再从动模中芯上脱出,完成第二次脱模。通过两次脱模,减少了每次脱模的力量,可顺利完成压铸件的脱出。

图9  缓冲体动模芯

解决了压铸件的脱模问题,还需要在下一循环中使定模中芯准确复位,否则铸件尺寸将发生变化,质量得不到保证。对于定模中芯的复位问题可利用模具自身的结构来完成,该模具动模中芯和定模中芯是相贴合的,合模时,依靠定模中芯将顶出时跟出的动模中芯推回,即可使其准确复位。

 通过上述模具结构的改善,从根本上解决了缓冲体压铸件没有链轮安装孔底孔,后续加工难度大的问题,降低了废品率,大大提高了后续机械加工的生产效率。